

Novel treatments in nanomedicine: Developments and challenges

Kristofer J Thurecht

Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia.

ARC Centre of Excellence in Convergent Bio-Nano Science and Technology

Cyclops Grand Challenge Workshop

What's wrong with nanomedicines?

Development of nanomedicines is a key component of next generation therapeutics, but scientists still don't fully understand how key parameters drive efficacy

Material	Delivery efficiency [%ID]	No. Data Sets
Inorganic	0.8	86
Organic	0.6	137
Inorganic material		
Gold	1.0	45
lron oxide	0.6	8

1. Median 0.7% Injected dose reached tumour

2. This number has not changed in 10 years!

Other	0.9	23
Targeting strategy		
Passive	0.6	175
Active	0.9	57

The problem: There is no internal measure of predicting efficacy for individual patients; all patients get a nominal dose and treatment regime

Chan et al. 2016, Nature Reviews "Analysis of Nanoparticle delivery to tumours"

ositive

<u>Challenges in Nanomedicine translation – towards closed</u> <u>loop therapeutics and personalisation of medicine</u>

Theranostics

Wirelessly relay information back to clinician in real-time, allowing analysis and comparison with big datasets and drive therapeutic decisions

Dynamic PET

🗕 2 hrs —

Imaging nanomedicine aggregation in tumour

Time-activity curves for tumours

Dynamic PET with CT

Our Approach for optimising treatment: Two compartment model for tumour aggregation of nanomedicines.

Nanomedicine distribution in tumour - targeted vs EPR effect

2 Compartment Model for Distribution Accounts for differences in extravasation for two tumours

PSMA Positive

• PSMA Negative

Targeting increases accumulation by ~ 2-fold

For individual patients, the degree of accumulation can be determined and therapeutic strategy modelled

Strategy 2: Feedback loop on therapeutic response, rather than delivery

Variable patient response to treatment and dose

Theranostic materials that are activated by response (apoptosis)

Strategy 2: Feedback loop on therapeutic response, rather than delivery

Switchable theranostics – Combined ¹⁹F MRI/¹H MRI

Multimodal Imaging – looking at multiple responses simultaneously

New approaches to nanomedicines offers a route for developing internal feedback mechanism for therapeutic efficacy; theranostics

Challenges lie in detection, and choosing suitable response probes; subsequent decision making can be guided by feedback loop to established data sets.

With suitable modelling, these systems offer a realtime validation of individualised treatments.