

MIPs for imaging and therapeutic applications

Sergey Piletsky

Department of Chemistry College of Science and Engineering University of Leicester LE1 7RH E: sp523@le.ac.uk

Molecular imprinting

Solid-phase synthesis of nano-MIPs

Synthesiser for MIP nanoparticles

Automatic reactor for MIP nanoparticles

- Manufacturing cycle 3.5 hours
- Yield 50 mg (can be scaled up)

(Piletsky S. A., Guerreiro A., Whitcombe M. J. Preparation of molecularly imprinted polymers. **UK 0921025.3, EP 2507278 A1**)

Western blots: Ab versus MIPs

Samples were labelled with DyLight 800

MIPs for viruses and bacteria

CureCN

TEM images of MIP-nanoparticles (a), bacteriophage MS2 (b), and C difficile with MIP nanoparticles (c).

(Anal. Chem., 87, 6801-6807, 2015; Nature Protocols, 11, 443-455, 2016)

MIPs in assays

Comparison with antibodies

Template	MIP size, nm	Detecion limit for assay with MIP, nM	Detection limit in assay with antibodies, nM
Biotin	104±6	1,20x10 ⁻³	2,54x10 ⁻³
L-Thyroxine	164±11	8,07x10 ⁻³	17,5
Glucosamine	138±16	4,01x10 ⁻⁴	3,38x10 ⁻⁴
Fumonisin B2	94±4	6,12x10 ⁻³	2,5x10 ⁻²
Hemoglobin	149±15	8,7x10 ⁻²	1,54x10 ⁻⁴
Glycated hemoglobin ("polyclonal")	103±14	2,46x10 ⁻³	-
Glycated hemoglobin ("monoclonal")*	103±14	9,49x10 ⁻³	2,38x10 ⁻⁴

(Sci. Reports, **6**, 37638, 2016).

Theranostics and imaging

LDH assay (macrophages NR8383)

Nano Research, 9, 3463-3477, 2016.

ATP assay

MTT test

Cell membrane permeation

(Nano Research, 9, 3463–3477, 2016).

V30620N.118.tif EM 42364 NR8383 cells MIP nanoparticles, ID no. 4 Print Mag: 77300x @ 7.0 in 11:50 07/01/13 Microscopist: pjm41508 Lower concentration

500 nm HV=80.0kV Direct Mag: 60000x GSK UK

Imaging - targeting of cancer cells

MIP nanoparticles binding to EGFR

(NanoLetters, 17, 2307-2312, 2017; NanoLetters, in press, 2018)

Oral delivery of nanoMIPs

a)

a) Intestines Spleen b) Brain C) d) Liver 72 hours after consumption

Clearance of nanoMIPs with faeces delivered intravenously (blue) and orally (green) (no particles were detected after 1 week time)

Targeting senescent cells

MIP nanoparticles synthesised for epitope of protein biomarker of cellular senescence. Nanoparticles were able to bind selectively to membrane receptor.

Therapeutic effect

Therapeutic effect (anticancer)

Fluorescent beacons for chemotherapy

- Treatment of cancer involves exposure of a tumour to high doses of radiation (radiotherapy) or chemicals (chemotherapy) that destroys cancerous cells.
- The results of this treatment usually become apparent weeks/ months after the treatment and are monitored via reduction of a tumour.
- At present, there is no reliable and fast approach to monitor the efficacy of radiotherapy and chemotherapy within the short term of exposure.

Fluorescent beacons

- The method proposed here involves development and application of specific "beacons" - fluorescent nanoMIPs that are attached to the cancerous cells and removed at the exposure to treatment dose.
- The concentration of nanoMIPs in urine and blood can be measured using optical fibre sensors to estimate the efficacy of treatment and enabling clinicians to optimise the treatment.

Proposed work

The main objectives of the proposed work are:

- To develop fluorescent selective fluorescent beacons using MIPs technology that will bind to the cancerous cells and removed during the chemotherapy in the case of efficient reduction of the cancerous tissue;
- To develop a method of detection of the fluorescent beacons extracted from the body in the case of efficient reduction of the cancerous tissue using optical fibres;
- To validate developed method of monitoring efficiency of the cancer treatment using appropriate cancer model.

Partners

Prof. S. Piletsky – MIP synthesis and characterisation

Prof. Steve Morgan's Dr Sergiy Korposh - Optical sensors

- ? Cell culture
- ? Animal models

Other projects

- Drug delivery
- Imaging
- Cell proteomics

Team

